%5?5!0

Al-agents - &

bouwen
op Power Platform

Praktijkgids voor low-code agents waar klanten
en medewerkers echt iets aan heblben

Door Albert-Jan Schot, CTO Blis Digital

oooooooooooooo

Waar we het

over gaan
hebben:

Voorwoord Albert-Jan Schot 04
Al-toepassingen bouwen in low-code: ditis hoe je hetdoet 06
Architectuurprincipes voor Al-agents op Power Platform 12
Stappenplan: Van idee naaragent . 20
Low-code Al-agents en prompt-ontwerp: zo bouw je

een goede conversatie 26
Toegankelijkheid en Inclusiviteit: Al-agents vooriedereen____ 32
Adaptive Cards voor rijke interacties 36
Integreer je Al-agent met de rest van het Power Platform.

En de rest van de wereld 40
Slim testen van je Al-agent 44
Van theorie naar praktijk: werkende Al-agentsinactie . 48

Conclusie

S4

Waarom ik
dit voor jou

geschreven
helb:

Ik ben Albert-dJan Schot, CTO bij Blis Digital. Mijn collega’s
noemen me Appie. Ik houd me bezig met drie dingen: R&D om
nieuwe technologie te verkennen, presales om klanten te
helpen met complexe vraagstukken en gewoon lekker met mijn
voeten in de klei software maken. Al heeft alle drie die rollen
fundamenteel veranderd.

De afgelopen tijd hebben we bij Blis Digital veel geschreven
over Al-agents: wat ze kunnen, waarom ze waardevol zijn, welke
impact ze hebben op organisaties en hoe je ermee werkt in de
poraktijk. Maar een vraag bleef telkens terugkomen:

Oké, mooi verhaal. Maar héé bouw je ze dan echt?

Dit boekje is mijn antwoord daarop. Niet de waarom of de wat,
maar de hoe. Hoe je Al-agents bouwt die niet alleen slim zijn,
maar ook doen wat ze moeten doen. Agents die morgen al in
productie kunnen draaien.

Ik schrijf dit voor jou als je een maker bent. Als je houdt van
techniek die echt werkt Als je niet denkt in abstracties, maar in
werkende oplossingen. Het maakt me niet uit of er CTO', 'dev lead,
‘oroduct owner, ‘developer’ of iets totaal anders op je LinkedIn
staat Het gaat erom dat je iemand bent die wil dat het werkt en
dat gebruikers er snel mee kunnen werken.

In dit boek laat ik je zien hoe je Al-agents bouwt op Microsoft
Power Platform. Waarom Power Platform? Omdat het snel naar
productie gaat, omdat het naadloos integreert met Microsoft Al
enomdat je direct kuntwerken met de data die alin je organisatie
zit. Geen maanden ontwikkeltijd, maar morgen al een werkende
agent.

Je leest over architectuurprincipes, over het ontwerpen van
goede conversaties, over integratie met je bedrijffssystemen en
over testen op wat er fout kan gaan. En vooral: je krijgt praktische
voorbeelden die je direct kunt toepassen.

Geen theorie om de theorie. Gewoon: dit werkt, zo doe je het,
pegin vandaag.

Dus laten we gauw beginnen.

Al-agents
bouwen In
low-code:
dit is hoe je
het doet

Laten we bij het begin beginnen. In dit hoofdstuk hebben we het over keuzes
maken. En hoe die keuzes bepalen of je straks met een werkende agent
eindigt of met een demo die nooit productie haalit.

Van ontwerp naar realisatie

In het whitepaper "“Ontwerpen voor het Al-tijJdperk” beschreven mijn
collega’s Kim en Akhil hoe je klassieke ontwerpprincipes vertaalt naar een
Al-gedreven wereld. Dat paper laat zien hoe interacties veranderen, wat een
agent nodig heeft om goed te functioneren en hoe je ontwerpt voor een
systeem dat niet alleen antwoorden geeft, maar ook acties uvitvoert. De kern
daarvan draait om drie principes:

1. Begin altijd met waarom: welk probleem los je op?

2. Beschouw Al-agents als stakeholders: wat heblben ze nodig om goed
te functioneren?

3. Denk verder dan de chatbot: Al kan ook onzichtbaar op de
achtergrond werken

Die principes zijn het fundament. Maar na ontwerp komt realisatie. En daar
wordt het concreet. Want je kunt het mooiste ontwerp hebben, maar als je
het niet snel genoeg naar productie krijgt, heeft niemand er wat aan.

Waarom Power Platform?

Er zijn veel manieren om Al-toepassingen te bouwen. Je kunt full-code gaan
met Python en framewaorks, je kunt experimenteren met tools die je helpen
snel prototypes te maken, maar bij Blis kiezen we vaak voor Microsoft Power
Platform. Niet omdat het de enige optie is, maar omdat het een aantal
dingen buitengewoon goed doet:

2 Snelheid naar productie: Met Power Platform bouw je niet alleen snel
een prototype, je bouwt meteen iets dat productiewaardig is. Geen
maanden ontwikkeltijd, geen eindeloze discussies over infrastructuur.
Je begint vandaag, test morgen en draait volgende week in productie.
Die snelheid is geen luxe, het is een noodzaak als je wilt leren van
echte gebruikers, niet van theoretische scenario’s.

2 Integratie met Microsoft Al-functies: Power Platform zit vol met
ingebouwde connecties naar Azure OpenAl, Al Builder en andere
Microsoft Al-services. Je hoeft niet zelf de integratie te bouwen, die zit
er alin. Dat betekent minder technische complexiteit en meer focus op
wat de agent moet kunnen in plaats van hoe je hem technisch aan
de praat krijgt.

2 Werken met je bedrijfsdata: Dit is misschien wel het allerbelangrijkste:
Power Platform is gebouwd om te werken met de data die al in je
organisatie zit. Dataverse, SharePoint, Dynamics, Teams - alles is al
verbonden. Een Al-agent is zo slim als de data die hij krijgt en als die
data al beschikbaar en gestructureerd is, win je enorm veel tijd.

Governance is geen zorg voor later

Hier komt het punt waar veel organisaties de fout ingaan: ze beginnen met
experimenteren zonder na te denken over governance. Governance Klinkt
saai, maar het is essentieel vanaf dag éen. Governance betekent: wie mag
wat, hoe hou je controle en hoe voorkom je dat je agent straks dingen doet
die niet mogen?

Denk dus vanaf het begin na over dataveiligheid: welke data mag je
agent inzien? Mag hij persoonlijke informatie verwerken? Wie controleert
wat er gebeurt met gevoelige gegevens? En denk aan toegangsrechten:
welke gebruikers mogen de agent gebruiken? Welke acties mag de agent
uitvoeren namens een gebruiker?

In Power Platform regel je dit via Data Loss Prevention (DLP) policies, security
roles en environment-instellingen. Dat klinkt technisch, maar het principe is
simpel: bepaal vooraf wat wel en niet mag en tot welke dota en systemen je
agent toegang heeft. Bouw je agent op basis van deze afbakening. Anders
krijg je straks een agent die fantastisch werkt, maar die je niet live mag
zetten omdat hij privacyregels schendt of toegang heeft tot systemen waar
hij niet hoort te komen.

Power Platform admin center 0. ‘Santthi it seliinge: pges snabre D & 2 g

a A @ Manage settings at scale .
Home Security [c] %, Get intelligent recommendations and real-time notifications

) Plus you get related security and operations features

© 8 oveniew Calculating security score

—

24-48 hours to see your score.
Manse | 3 Data and privacy

. @ Identityand access

7 Threat detection — .
Take action to increase your security score

Compliance ‘These recommendations span all environments, but you can only take acton on them here in environments that are managed. To apply them to more environments, go to the settings pages

in Security, and turn them on for non-managed environments there.
& Products.

Lo Bt Active (6) Dismiszed (0)
Sepiomn
Impact Recommendation Score increase Last modified
. 1 High Turn on GSA for Agents for 4 environments — 12/11725
1 High Turn on IP address-based cookie binding for 9 environments. — 12/11725
sompere
¥ High Turn on IP firewall for 9 environments. - 12/11/25
¥ High ‘Add security groups to 4 environments — 12/11/25
1 High Restrict guest user access for 8 environments — 12/11725
Medium Turn on auditing for 9 environments = 12711728
« »
Learning
Admin
centers
Security on Power Platform Build and run safe solutions on Power Platform Compliance and data privacy -

- Het Power Platform Admin center biedt over verschillende assen inzicht
in Data & Privacy en andere security controls.

Power Platform admin center D e P e o) pages e e D @ 2 g
@ B DLP Policies » Edit Policy
Home Security il
@ Overview € Set default group.
Aetrs @ Folicy name
il = ‘ Defaut Environment North Sar DL 9 B
&
vansge Data and priva
- i @ Prebuilt connectors A
™) Assign connectors ©
| @ Identity and access ‘
seary
78] Threat detection © Custom connectors Business(S) Non-business (1568) | Default Blocked (12) P search connectors
Blocked connectors can't be used where this policy is applied.
@ Produas © scope .
ot
& PoerPages ‘ D Name v/ Blockable Endpoint configu... \/ Class \/
k. © Environments
Oty
‘ ? Dynamics 365 (deprecated) Yes No Premium
Review
[°
suppor:
Amazon Redshift Yes No Premium
Amazon 53 Yes No Premium

S Overzicht van configuratie van een van de DLP policies waarin je
duidelijk ziet dat een aantal (12) stuks zijn geblokeerd, zodat ze niet
gebruikt kunnen worden.

10

Begin klein, schaal onder governance

Start je Al-avontuur met een concreet scenario. Geen mego-agent die alles
kan, maar een oplossing voor een specifiek probleem. Een HR-agent voor
verlofaanvragen. Een IT-agent voor wachtwoord resets. Een finance-agent
die rapporten ophaalt. Klein, overzichtelijk, meetbaar.

Bouw die agent binnen een environment met duidelijke regels. Test hem
grondig. Meet of hij doet wat hij moet doen. En als het werkt? Dan schaal je
op. Voeg een tweede scenario toe. Breid uit naar andere afdelingen. Maar
altijd binnen de kaders van je governance-model. Zo0 bouw je niet alleen
snel, maar ook verantwoord. En dat is precies waar het om gaat: technologie
die werkt en veilig is.

In de volgende hoofdstukken duiken we dieper in de architectuur, het
ontwerp van gesprekken, integraties en praktische voorbeelden. Maar
onthoud dit: voordat je begint met bouwen, zorg dat je weet waarom je
bouwt, hoe je het veilig houdt en dat je klein begint.

IBE;IJS!G!CI

"Start je
Al-avontuur
met een
concreet
scenario”

eeeeeeeeeeeeeeeeeeeeeeeeeee

Architectuur
orincipes
VOOr Al-
agents

Oop Power
Platform

Een chatbot is niet meteen een Al-agent. Dat is het eerste wat je moet
begrijpen. Een chatbot reageert op wat je vraagt met informatie. Een Al-
agent voert autonoom taken uit om een doel te bereiken. Het verschil? Jij
stelt het doel, de agent kiest zelf de aanpak. Vertel een chatbot dat je verlof
aan wilt vragen en hij zegt: “Ga naar het HR-portaal.” Vraag het een agent
en hij regelt het meteen, inclusief goedkeuringsflow en notificatie naar je
manager.

Laten we even wat uitgebreider stilstaan bij de verschillende soorten
Al-oplossingen, want ze heblben allemaal hun eigen sterke en zwakke
punten. Dus is het belangrijk dat je de juiste keuze maakt. Bij Blis Digital
onderscheiden we drie hoofdcategorieén van Al-oplossingen:

A Al agents: Al agents zijn autonome softwareprogromma’s. Ze kunnen
redeneren, handelingen uitvoeren en interacteren met data en
systemen. Jij geeft de agent een doel (‘regel dit voor me”) en hij gaat
zelf bedenken hoe hij daar komt Hij probeert verschillende wegen
uit tot het gelukt is. Dat maakt Al agents krachtig, maar soms ook
onvoorspelbaar.

2 Agentic workflows: 7ock je meer controle? Dan heb je een agentic
workflow nodig. Hierbij bepaal jij exact welke stappen er gezet
worden, in welke volgorde en wat er moet gebeuren als iets misgaat.
Al speelt een rol als een van de radertjes, maar altijd binnen de
grenzen die jij stelt. Sommige stappen zijn normale automatiseringen
(code die altijd hetzelfde doet), andere stappen besteed je uit aan
een Al agent.

A2 Al search en dataverrijking: De derde categorie krijgt vaak minder
aandacht, maar is minstens zo belangrijk: Al search en dataverrijking.
Zowel je agents als je workflows zijn nergens zonder goede data. Al
search zorgt ervoor dat die data vindbaar, begrijpelijk en bruikbaar
is. Het is de onmisbare laag tussen je ruwe bedrijfsdata en de Al-
oplossingen die je erop bouwt. Met Al kun je semantisch zoeken. Je
zoekt dan niet meer op zoekwoorden, maar op betekenis. Al kan data
ook verrijken door tags en metadata toe te voegen aan documenten,
zodat je dwarsverbanden kunt leggen die je eerder niet zag.

Bij het maken van een keuze is het principe altijd: begin bij het probleem, niet
bij de oplossing. Als je je businessprobleem begrijpt, kun je daarna een (Al-)
aanpak kiezen die daarbij past.

14

Maar welke technologie je ook kiest, het succes van je oplossing staat of
valt altijd met de kwaliteit van de data. Want als de input of de context niet
kloppen, maakt zelfs de best opgezette agent, workflow of zoekmachine
cruciale fouten.

Al-gestuurde agents die handelen, O
redeneren en samenwerken over O
applicaties heen.

Gestructureerde en
ongestructureerde data die
wordt gebruikt voor training,

Al ontsluiting en inzichten.
Agents
Al-verrijkte

Al-gestuurde Al workflows die
zoekfunctionaliteit Ready processen en
met indexering, RAG Data pesluitvorming
en verrijking van optimaliseren.
metodata. &—— Al Al —— >

D Search Workflow o}o

& Drie typen Al-oplossingen, met Al ready data als basis

Architectuur op orde: 7 kernprincipes

Het autonome karakter van agents maakt ze krachtig, maar ook complex.
Want als een agent zelf beslissingen neemt, moet je architectuur op orde
zijn. Geen shortcuts, geen “dat regelen we later wel”. Bij agents is techniek
geen bijzaak, het is de basis van betrouwbaarheid en vertrouwen.

De keuzes die je maakt rond omgeving, security en onderhoud hebben
directe impact op bruikbaarheid, schaalbaarheid en vertrouwen. Hieronder
de kernprincipes die je helpen bij het maken van de juiste keuzes.

15

1. Begin met een Solution

Dit klinkt als een open deur, maar ik zie het toch te vaak fout gaoan: mensen
pouwen agents los van hun flows, connectoren en data. Dat werkt niet
Gebruik altijd een Power Platform Solution om alles bij elkaar te houden. Een
Solution bundelt je agent, flows, connectoren, tabellen en configuratie in éen
pakket.

Waarom is dat belangrijk?

2 Overdraagbaarheid: Je bouwt in development, test in acceptatie,
rolt uit naar productie. Met een Solution exporteer je alles in een keer.
Geen losse onderdelen die je handmatig moet nabouwen.

2 Versiebeheer: Je wilt weten welke versie van je agent waar draait. Een
Solution maakt dat inzichtelijk. Je publiceert een nieuwe versie, test die
en als het misgaat rol je terug naar de vorige.

2 Cl/CD-pipelines: Als je serieus agents wilt bouwen, automatiseer je
deployment. Met Solutions kun je via pipelines automatisch uvitrollen
naar verschillende environments. Dat scheelt tijJd en voorkomt fouten.

Als je al met Power Platform werkt, doe je dit waarschijnlijk al. Maar zo niet:
dit is stap eén.

Department X Prod Product Y Prod
Department X Test Product Y Test
Department X Dev Product Y Dev

2 S L €2 $
& 0 & 0 & 0

Default environment

N N
Tenant
|
0A~0 0~O

o) 0
c2> 25

b Overzicht van mogelijke omgevingsindelingen. Noast de
standaardomgeving kunnen per afdeling of per product meerdere
omgevingen worden ingericht, zoals development, test en productie.
70 kun je agents veilig ontwikkelen en testen zonder het risico dat een
wijziging direct impact heeft op de productieomgeving.

16

- In Power Platform werk je met Solutions.
Dit is een soort ‘map’ waarin je alles
rondom een agent bundelt, zoals de
agent zelf, gekoppelde tools en data, en
verbindingen met andere systemen. Je
rolt een Solution uit naar een omgeving
om test en productie te scheiden, zodat
je aanpassingen kunt doorvoeren zonder

- - - -FnvironmentB=-—---+4 dat gebruikers deze direct zien.

N
'

R T T T

2. Eén scenario, één agent

Een agent kan prima een chat-interface heblben. Sterker nog, dat is vaak
de meest natuurlijke manier om met een agent te communiceren. Maar
het verschil met een chatbot zit hem in wat er achter die chat gebeurt. Een
chatbot geeft informatie, een agent voert acties uit. Hij roept flows aan,
past dota aan, stuurt notificaties, maakt tickets aan. Dat is waarom je per
scenario een aparte agent bouwt.

Ik zie vaak de neiging om meerdere functies in te bouwen in een soort
‘super-agent. HR, IT, finance, facilities - allemaal in eéen gesprek. Dat lijkt
efficiént, maar is het niet. Zo'n mega-agent wordt onbeheersbaar. De
prompts worden te complex, de flows te vertakt en de gebruiker raakt
verdwaald in een gesprek dat alle kanten op schiet.

Maak in plaats daarvan per scenario een aparte agent. Een HR-agent voor
verlof en verzuim. Een IT-agent voor wachtwoorden en toegang. Een finance-
agent voor rapporten en declaraties. Klein, overzichtelijk, met een duidelijk
doel. Als scenario's elkaar overlappen, laat je agents samenwerken via
orkestratie. Daar komen we later op terug.

17

3. Gebruik aparte Environments

Ontwikkeling, test en productie horen gescheiden te zijn. Altijd. Je wilt niet
dat een test-agent per ongeluk echte data aanpast of emails verstuurt.
In Power Platform regel je dat met Environments: aparte omgevingen met
eigen data, eigen security en eigen configuratie.

Mijn advies: gebruik minimaal drie environments. Development
VvOOor bouwen en experimenteren. Test voor validatie en user
acceptance testing. Productie voor live gebruik.

Beperk per environment de toegang op basis van rollen. Developers mogen
alles in development, maar niet in productie. Eindgebruikers zien alleen
productie.

En stel per environment de juiste Data Loss Prevention (DLP) policies in. Die
policies bepalen welke connectoren samen mogen werken. Bijvoorbeeld: je
wilt wel dat je agent data uit Dataverse haalt, maar niet dat hij die zomaar
naar een externe API stuurt. DLP voorkomt dat.

4, Snap de impact van DLP policies

DLP policies zijn geen formaliteit. Ze bepalen letterlijk wat je agent kan en
niet kan. Een agent die data uit Dataverse ophaalt en ook Outlook gebruikt,
kan geblokkeerd worden als die connectoren niet in dezelfde policy-groep
zitten. En een agent die via een Custom Connector met een externe API
praat, vereist expliciete toestemming.

Inventariseer dus vooraf welke connectoren je nodig hebt. Overleg met je
Power Platform admin en je CISO (of zet zelf die pet op). En test je agentin
alle environments, want DLP policies kunnen per environment verschillen.

5. Kies je connectoren bewust

Copilot Studio werkt met standaardconnectoren. Die zitten ingebouwd en
vragen geen extra licentie. Vaok doen deze connectoren wat je wilt, maar
soms heb je meer nodig, bijvoorbeeld connectors voor legacy-systemen

of externe API's. Er zijn ook premium connectoren die geavanceerde
functionaliteit bieden. Kies je ervoor om connectoren te bouwen of te kopen,
dan kost dat geld en vraagt beheer.

18

Mijn advies: gebruik alleen wat je echt nodig hebt Less is more.
Elke connector is een afhankelijkheid, een potentieel risicopunt
en iets dat onderhouden moet worden. Houd het simpel.

6. Documenteer alles

Dit klinkt saai, maar hetis cruciaal. Zorg dat je bij elke agent weet welke
connectoren en acties worden gebruikt, welke data wordt gelezen of
geschreven en welke fallback- of escalatiepaden er zijn. Waarom? Omdat je
over drie maanden vergeten bent hoe het werkt. En omdat iemand anders
het misschien moet overnemen.

Documentatie hoeft niet fancy te zijn. Een README in je Solution met
architectuurschets, dependencies en contactpersonen is al genoeg. Dat
kan overigens alleen als je source code integration hebt ingeschakeld,
dus dat doen wij standaard. Het gaat erom dat iemand die de agent niet
gebouwd heeft, toch begrijpt wat hij doet en hoe. Natuurlijk gebruik je hier
OOk Al voor.

7. Beheer agents als software
Agents zijn software. Behandel ze ook zo:

2 Gebruik Application Lifecycle Management (ALM): sla wijzigingen
op in een source control, gebruik pipelines voor het uitrollen, plan
updates en rollbackscenario’s. Dit is geen overkill, dit is professioneel
werken.

2 Security by design: Authenticatie en autorisatie zijn geen extroatje.
Wie mag de agent starten? Wat mag de agent doen namens een
gebruiker? Gebruik Azure Key Vault voor secrets, beperk toegang via
rollen en log alles wat de agent doet.

Een goed ontworpen agent is niet alleen slim aan de voorkant, maar
robuust, veilig en beheersbaar onder de motorkap. Zie het bouwen van
agents niet als een losstaand experiment, maar als integraal onderdeel van
je platformstrategie. Want dat is het.

IBE;IJS!G!CI

"Gebruik
alleen
wat je echt
nodig hebt.

Less
IS more”

eeeeeeeeeeeeeeeeeeeeeeeeeee

Stappenplan:
Van idee
Naar agent

21

Je hebt een probleem geidentificeerd. Je weet waarom je een agent
wilt bouwen. Je hebt je architectuur op orde. Nu wordt het concreet: hoe
bouw je dat agent daadwerkelijk? Niet als theoretisch concept, maar als
werkende oplossing die morgen al draait.

De waarheid is: er is geen universeel recept Elke usecase is anders, elke
organisatie heeft eigen systemen en elke gebruikersgroep heeft eigen
verwachtingen. Maar er is wel een structuur die werkt. Zeven stappen die je
van idee naar productie brengen. En het mooie? Bij stop drie heb je al iets
dat je kunt laten zien.

Stap 1: Kies een specifieke usecase

Hoe specifieker het probleem dat je oplost met je agent, hoe beter. Begin
dus niet met “een HR-assistent” of iets dergelijks, begin met “een agent

die verlofaanvragen afhandelt” Specifiek, meetbaar, met duidelijke in- en
output. Een medewerker wil verlof aanvragen. De agent checkt het tegoed,
vraagt de juiste gegevens op, stuurt een goedkeuringsverzoek naar de
manager en bevestigt zodra het geregeld is.

Waarom zo specifiek? Omdat je wilt leren. Je wilt zien of je agent werkt, of
gebruikers het snappen en of het waarde toevoegt. Dat lukt het beste met
een simpel scenario dat je in een week live kunt zetten. En ja, straks bouw je
meer agents. Voor ziekmeldingen, voor ontboarding, voor salarisadministratie.
Maar niet allemaal tegelijk. Eén scenario, bewijzen dat het werkt, dan pas
verder

Stap 2: Ontwerp de conversatieflow

Hier komt het verschil tussen developer en designer naar voren. Als
developer denk ik in data en logica: welke velden heb ik nodig, welke
validaties moet ik doen, welke API's moet ik aanroepen? Maar een agent
pegint niet met code, het begint met taal.

Hoe start het gesprek? “Ik wil verlof aanvragen” is een goede conversation
starter. Maar wat komt daarna? Vraag je meteen om data? Of geef je eerst
context? “Prima, ik help je daarmee. Hoeveel dagen wil je opnemen en
wanneer?” Klinkt natuurlijker dan een formulier met verplichte velden.

En dan de edge cases. Wat als iemand zegt: "Ik wil vrij”? Of “Volgende week
maandag tot woensdag™? Of gewoon “Vakantie™? Je prompt moet robuust
genoeg zijn om variaties te herkennen, maar ook slim genoeg om door te
vragen als iets onduidelijk is.

22

Dit is waar je als developer moet leren denken als een schrijver. Niet: “Welke
parameter moet ik meegeven?’, maar: “‘Hoe zou ik dit tegen een collega
zeggen?” Het helpt om dit op papier te zetten voordat je Copilot Studio
opent. Teken de flow uit, bedenk varianten, test het in je hoofd. Het scheelt je
later uren debuggen.

Meestal zet je hiervoor een combinatie in van generatieve Al en ‘ouderwetse’
chatbot-techniek die op basis van de invoer de bedoeling van de gebruiker
herkent en dan een standaardflow (topic’ in Power Platform) in gang zet.
Herkent je agent de topic niet, dan kan hij geen actie ondernemen maar wel
informatie verstrekken op basis van de beschikibare kennis.

User, Author or Agent authentication

I — e |

Agent Flow

Standard
Dialog —[Flow]
| Intent 0
Trigger Tool Connector é
m

Knowledge]_[Rest AP]

Utteronce NO intent source
|~ recognized Gen Al Topic

Web Search] —[MCP]

— Fallback —[Gen Al Kmowledge]_{ Skills]

Source

In de afbeelding zie je hoe Copilot Studio een vraag van een gebruiker
afhandelt Als er een vraag binnenkomt, kijkt de agent of hij er topic
voor heeft. Zo ja (Intent recognized’), dan handelt hij de vraag af met een
standaardgesprek of met het uitvoeren van een actie in achterliggende
systemen of het aanroepen van een andere agent.

Begrijpt de agent niet wat de gebruiker wil, dan probeert hij het met
generatieve Al op te lossen. TijJdens die conversatie kan de agent altijd weer
teruggaan naar topics die wel bekend zijn. Bijvoorbeeld als de gebruiker het
gesprek beéindigt: dan weten veel agents dat ze feedback moeten vragen
met de bekende 5 smileys.

23

Stap 3: Voeg kennis en data toe

Een agent zonder data is een dom script. Kennis en context maken hem slim.
Bij verlofaanvragen heb je minimaal drie dingen nodig: hoeveel tegoed heeft
deze medewerker, wie is de manager en welke afdelingsregels gelden.

Die data zitten ergens. Misschien in Dataverse, misschien in een HR-
systeem, misschien in SharePoint. Het maaokt niet uit waar, als je het maar
kunt ophalen. In Power Platform gebruik je connectoren om data te
ontsluiten. Dataverse is vaak de makkelijkste: gestructureerd, veilig en native
geintegreerd. Maar externe systemen kunnen ook, via REST API's, custom
connectors of Model Context Protocol (MCP) server..

Hier komt ook Retrieval Augmented Generation (RAG) in beeld. Stel: je wilt dat
het agent verlofregels uitlegt. Die regels staan in een beleidsdocument op
SharePoint. Je kunt dat document handmatig in je prompt stoppen, maar
dat schaalt niet. RAG haalt automatisch relevante stukken uit documenten
op basis van de vraag. "Hoeveel ouderschapsverlof mag ik opnemen?”
triggert een zoekopdracht, vindt het juiste hoofdstuk en de agent geeft
antwoord op basis van die context.

Stap 4: Koppel acties

Een agent die alleen informatie geeft, is een chatbot. Een agent die
acties uitvoert, is veel waardevoller. Bij verlofaanvragen betekent dat:
data wegschrijven in Dataverse, een goedkeuringsflow triggeren in Power
Automate en notificaties sturen naar Teams.

Hier komen drie soorten acties bij kijken:

2 Agent flows: De standoard voor procesorkestratie. Je agent triggert
een flow, die flow doet het zware werk: goedkeuringen, notificaties,
data updates. Clean, beheersbaar, herbruikibaar.

2 Custom connectors: Voor systemen zonder standaardconnector.
Legacy HR-systemen, ticketing tools, ERP-pakketten. Je bouwt een
connector, definieert de API-calls en je agent kan ermee praten alsof
het native integratie is.

A RPA via Power Automate Desktop: Voor systemen zonder API Ja,
dat bestaat nog steeds. Een oud personeelssysteem waar je moet
inloggen, door schermen moet klikken en formulieren moet invullen.
RPA automatiseert die handelingen. Niet ideaal, maar soms de enige
optie.

24

Kies altijd de simpelste aanpak die werkt. API's boven RPA,
standaardconnectoren boven custom. Less is more.

Stap 5: Ontwerp de interactie

Tekst is prima, maar niet altijd het meest efficient. Een Adaptive Card met
dropdowns en knoppen is sneller en duidelijker. “Welk type verlof?” met
keuzes: Vakantie, Ziekte, Ouderschapsverlof, Onbetaald. Eén klik in plaats van
typen en hopen dat het agent het snapt.

Adaptive Cards zijn ook visueel sterker. Je kunt samenvatten wat de
gebruiker heeft ingevuld, laten bevestigen en pas dan de actie uitvoeren.
‘Je vraagt 5 dagen vakantie aan van 10 tot 14 juni. Manager: Jan

Jansen. Bevestigen?” Met knoppen Ja en Nee. Geen verwarring, geen
interpretatiefouten.

We gaan hier later dieper op in, maar onthoud: goede agents combineren
conversatie met interface-elementen. Het een sluit het ander niet uit.

Stap 6: Test grondig

De happy path van agent is makkelijk te testen. Een agent werkt prima als

alles klopt: juiste input, volledige data, geen fouten. Maar de wereld is niet

perfect Gebruikers typen onduidelijk, informatie ontreekt of systemen zijn
traag. baar moet je op ook testen.

We behandelen dit uitgebreid in een later hoofdstuk, maar hier alvast

de basis: test op onverwachte input, test op iIncomplete data, test op
systeemfouten. En bouw fallbacks in. Als een agent iets niet snapt, moet hij
dat zeggen en een alternatief bieden. “Ik begrijo je vraag niet helemaal. Wil
je verlof aanvragen, je tegoed checken of heb je een andere vraag?”

Stap 7: Deployment en monitoring

Je hebt getest, het werkt, dus nu kan het live. Maar deployment is meer
dan een knop indrukken: ten eerste rol je uit naar productie, maar moet je

development en test beschikbaar houden voor doorontwikkeling. En dan
is er monitoring: je wilt weten welke gesprekken goed lopen, waar je agent
afhaakt en welke vragen voor verwarring zorgen.

Ook dit komt later vitgelbreid aan bod, maar het principe is simpel: live gaan
is niet het eindpunt, het is het begin van leren wat werkt en steeds weer
verpbeteren.

De stappen zijn eigenlijk geen stappen

Deze zeven ‘stappen’ zijn geen projectplan en zeker geen waterval. Je
doorloopt ze niet lineair en bent dan klaar. Je itereert. Je bouwt een
pasisversie, test die, leert ervan, verbouwt. Bij stap drie heb je al een werkend
prototype. Bij stap vijf kun je gebruikers laten testen. Bij stap zeven draait het
live, maar dan ben je pas echt begonnen met leren.

Het mooie van Power Platform is dat itereren snel gaat. Geen weken
wachten op deployment, geen complexe release cycles. Je past aan, je test,
je rolt de nieuwe versie vit. Die snelheid maakt het verschil tussen een agent
die werkt en een agent die echt gebruikt wordt.

25

Low-code
Al-agents
en prompt-
ontwerp:

ZO bouw je
een goede
conversatie

Het bouwen van een goede Al-agent begint niet bij techniek. Het begint bij
taal. Letterlijk.

Dat is voor mij als developer soms lastig. Of in ieder geval een andere
manier van over software nadenken. Ik ben gewend aan code die precies
doet wat ik opschrijf. If-then-else, loops, functies. Voorspelbaar. Maar een
agent werkt anders. Je schrijft geen instructies, je voert een gesprek. En dat
gesprek moet natuurlijk aanvoelen, ook al is het met een machine.

Dit hoofdstuk gaat over hoe je dat gesprek ontwerpt. Hoe je een agent leert
wat hij moet doen, hoe hij zich moet gedragen en hoe hij reageert op wat
gebruikers zeggen. En ja, dat vraagt om een andere manier van denken dan
je misschien gewend bent.

Systeemprompts: hoe je rol en gedrag van je agent bepaalt

Een systeemprompt is de basis van je agent Hetis de instructie die bepaalt
wie of wat de agent is, hoe hij zich gedraagt en wat hij wel en niet mag
doen. Denk aan het als de functieomschrijving van een nieuwe collega. Je
legt uit wat de verantwoordelijkheden zijn, welke tone of voice je verwacht
en waar de grenzen liggen.

In Copilot Studio bouw je deze systeemprompt op in het systeemprompt-
veld. Je kunt dat op verschillende manieren doen: platte tekst, markdown of
YAML. Welke je kiest hangt af van complexiteit en voorkeur. Laten we kijken
naar een concreet voorbeeld voor ons verlof-agent.

Platte tekst is het simpelst. Je schrijft gewoon op wat de agent moet doen:

Je bent een HR-assistent die medewerkers helpt met
verlofaanvragen. Je taak is om het verlofaanvraagproces
te begeleiden. Vraag altijd naar het type verlof, de
gewenste periode en controleer of er voldoende tegoed
is. Wees vriendelijk en professioneel. Bij onbekende
situaties verwijs je door naar de HR-afdeling.

Dit werkt prima voor eenvoudige agents. Het is direct, leesbaar en je kunt
snel aanpassen. Maar bij complexere agents wordt het snel onoverzichtelijk.

27

Markdown voegt structuur toe. Je gebruikt headers, lijsten en formatting om
de prompt georganiseerd te houden:

Rol
Je bent een HR-assistent gespecialiseerd in
verlofaanvragen.

Verantwoordelijkheden

- Begeleid medewerkers door het
verlofaanvraagproces

- Controleer verloftegoed voordat je een aanvraag
accepteert

- Leg verlofregels uit wanneer daarom gevraagd
wordt

- Verwijs door naar HR bij complexe vragen

Gedragsregels
- Wees vriendelijk en professioneel
- Gebruik duidelijke, begrijpelijke taal
- Vraag altijd om bevestiging voordat je een
aanvraag indient
- Bescherm de privacy van andere medewerkers

Beperkingen

Beperk je toegang tot verlofgegevens van de medewerker
zelf. Vraag manager-approval voor uitzonderingen op
standaardregels.

Markdown is mijn voorkeur voor de meeste agents. Het is leesbaar, je kunt
secties duidelijk scheiden en het blijft overzichtelijk als de prompt groeit.

YAML is het meest gestructureerd. Je definieert de prompt als data:

agent:
role: “HR-assistent voor verlofaanvragen”
tone: “vriendelijk en professioneel”

responsibilities:
= “Begeleid verlofaanvragen van start tot finish”
= “Controleer verloftegoed”
= “Leg verlofregels uit”
= “Werwijs door bij complexe vragen”

28

29

behavior:
language: “duidelijk en begrijpelijk”

confirmation: “altijd vragen voor actie”
privacy: “bescherm informatie over andere
medewerkers”

constraints:

- “Beperk toegang tot verlofgegevens van de
gebruiker zelf”

- “Wraag manager-approval voor uitzonderingen”

- “Werwijs door naar HR bij twijfel”

YAML is krachtig als je veel variabelen helbt of als je de prompt
programmatisch wilt genereren. Maar voor de meeste usecases is het
overkill. Gebruik het alleen als je echt de structuur nodig hebt.

Wat zijn conversation starters en waarom zijn ze belangrijk?

Nog voordat een gebruiker een vraag stelt, wil je duidelijk maken dat het
agent klaarstaat om te helpen. Dat is waar conversation starters in beeld
komen: vooraf gedefinieerde prompts die gesprekken op gang helpen.

Vergelijk het met een baliemedewerker die vriendelijk vraagt: “Waarmee

kan ik u helpen vandaag?” Zonder zo'n uvitnodiging blijven gebruikers

vaak hangen in twijfel of vaagheid. Een goede conversation starter biedt
herkenning (‘ah, dat bedoel ikl"), richting ('zo kan ik beginnen”) en vertrouwen
("deze agent snapt mijn wereld”).

In Copilot Studio zijn conversation starters voorgedefinieerde tekstprompts
die verschijnen zodra een gebruiker het gesprek met het agent start. Ze
zijn bedoeld om het ijs te breken en geven aan hoe een gebruiker veel
voorkomende taken of vragen kan aanpakken.

Conversation starters er in de praktijk
Voorbeelden voor onze verlof-agent:

Ik wil verlof aanvragen”

‘Hoeveel verlofdagen heb ik nog?”

‘Hoe vraag ik ouderschapsverlof aan?”

‘Wanneer wordt mijn verlofoanvraag goedgekeurd?”

N N NN

Het zijn geen abstracte categorieen als ‘Personeelszaken’ of ‘HR-informatie)
maar actiegerichte zinnen die je ook tegen een collega zou zeggen. Ze
geven duidelijk de intentie en ondersteunde scenario’'s van je agent aan.

Ontwerpprincipes voor sterke conversation starters
Volg deze vier principes als je conversation starters bedenkt voor je agent:

2 Denk in intenties, niet in onderwerpen: Gebruikers zoeken geen
informatie, ze willen iets gedaan krijgen. “Ik wil verlof aanvragen” werkt
beter dan “Informatie over verlof™.

2 Gebruik alledaagse taal: Vermijd jargon of formeel bedrijfsproza.
Denk: “Hoe vraag ik ouderschapsverlof aan?” in plaats van
‘Aanvraagprocedure ouderschapsverlof initieren”. Als jij het zelf niet zo
70U zeggen, doe het dan niet.

2 Focus op acties: Start je prompt met “Ik wil.." of "Hoe doe ik.. Dat helpt
de Al ook om beter te matchen op intentie. Het verschil tussen “Verlof”
en “Ik wil verlof aanvragen” is voor de reactie van een agent enorm.

2 Houd het herkenbaar: Boseer starters op veelvoorkomende vragen
in je service- of HR-portaal, of analyseer eerder chatverkeer. Als
80% van je gebruikers vraagt naar vakantiedagen, zorg dat dat een
conversation starter is.

Van starter naar gesprek

Een goede conversation starter is het begin, maar daarna komt het echte
gesprek Wat gebeurt er als iemand Kklikt op “Ik wil verlof aanvragen™

Dan moet je systeemprompt het overnemen. Je agent moet weten wat
de volgende vraag is, welke data hij nodig heeft en hoe hij ommgaat met
onduidelijkheid.

Bijvoorbeeld: iemand zegt “Ik wil verlof aanvragen”. De agent weet uit de
systeemprompt dat hij vriendelijk moet zijn en altijd moet bevestigen. Dus
hij antwoordt: "Prima, ik help je daarmee. Hoeveel dagen wil je opnemen en
wanneer?” En als de gebruiker zegt “Twee weken in juli’, dan snapt de agent
dat en vraagt door: “Welke twee weken precies? Ik zie dat je nog 15 dagen
tegoed hebt”

Dit is waar prompt engineering kunst wordt. Je moet de balans vinden
tussen sturen (zorg dat het gesprek op koers blijft) en flexibiliteit (gebruikers

30

zeggen dingen op hun eigen manier). Te streng en het voelt als een formulier,
te los en de aogent raakt de weg kwijt.

Testen en verfijnen

De eerste versie van je prompts werkt nooit perfect. Gebruikers zeggen
dingen die je niet verwacht had. Ze typen onduidelijk, ze geven incomplete
informatie, ze springen tussen onderwerpen. Dat is normaal. De kunst is om
daarop te anticiperen.

Test je conversation starters met echte gebruikers. Niet met collega’s die
weten hoe het werkt, maar met mensen die de agent voor het eerst zien. Kijk
waar ze blijven haken. Welke starter kiezen ze? Waar raakt de agent de weg
kwijt? Pas aan op basis van wat je ziet, niet op basis van wat je denkt dat
gebeurt.

En log alles. Copilot Studio heeft ingebouwde analytics. Gebruik die. Welke
vragen worden vaak gesteld maar heblben geen conversation starter? Waar
escaleert de agent naar een mens? Die informatie is goud waard voor het
verpeteren van je prompts.

Outcomes and engagement @ See details

000 | |met
1000
800
600
400
200
0

Monday Tuesday Wednesday Thursday Friday Saturda

@ Resolved @ Escalated @ Abandoned Unengaged

- Dashboard met Al-agent gespreksresultaten: resolved (succesvol
opgelost), escalated (doorverwezen naar medewerker), abandoned
(voortijdig afgebroken) en unengaged (geen interactie).

31

Toegankelijk-
heid en
INnclusivitelt:
Al-agents
VOOr
ledereen

33

Niet iedereen typt viot. Niet iedereen ziet scherp. En niet iedereen

voelt zich thuis in digitale interfaces vol tekstvelden en dropdowns.
Toegankelijkheid is dus geen extraatje dat je er later nog wel bij plakt. Het
is een fundamenteel ontwerpprincipe. En zoals mijn collega’s al schreven in
hun design-paper: als je Al-agents bouwt die bedoeld zijn voor een breed
publiek, moet je verder kijken dan tekst alleen.

Het goede nieuws? Copilot Studio biedt volop mogelijkheden om je

agent multimodaal te maken. Via spraak, knoppen, velden, kaarten. Door
verschillende vormen van input te combineren, maak je het niet alleen
makkelijker, maar ook menselijker en inclusiever. En dat is precies wat je wilt:
een agent die iedereen kan gebruiken, ongeacht hun digitale vaardigheden
of fysieke mogelijkheden.

Waarom toegankelijkheid bij agents zo belangrijk is

Je bouwt een verlofagent Geweldig. Maar bedenk: niet iedere medewerker
werkt op kantoor achter een toetsenbord. Sommigen zijn onderweg,
anderen werken in productie of op de werkvloer. Sommige gebruikers
heblben visuele beperkingen, anderen motorische uitdagingen. En dan

heb je nog de groep die gewoon niet zo digitaal vaardig is, of voor wie
Nederlands niet de eerste taal is

Als je toegankelijkheid serieus neemt, bouw je een agent die al die groepen
kan bedienen. Dat is geen mooi gebaar, dat is gewoon goed ontwerp. Want
een agent die maar door de helft van je organisatie gebruikt kan worden,
heeft weinig nut.

Multimodale input: meer dan alleen typen

De kracht van een goed ontworpen agent zit hem in de flexibiliteit. Geef
gebruikers keuze in hoe ze met de agent communiceren:

2 Tekstinvoer blijft de basis. Voor gebruikers die precies weten wat ze
willen, is typen “Ik wil verlof aanvragen van 15 tot 19 juli” nog altijd het
snelst.

2 Spraak is het tweede kanaal. Vooral mobiel, of voor gebruikers die

visueel beperkt zijn of gewoon liever praten dan typen. Copilot Studio
integreert met Microsoft 365-kanalen die spraak ondersteunen, zoals
Teams Mobile, en je kunt via Azure Speech Services spraakherkenning
toevoegen. Je hoeft daar niet diep in de techniek te duiken, je kunt het
gewoon aanzetten.

2 Knoppen zijn goud waard voor snelle keuzes. ‘Ja”, “Nee”, “Start
aanvraag”, ‘Annuleren’. Een gebruiker hoeft niet na te denken over
formulering, gewoon klikken en klaar.

2 Dropdowns en keuzelijsten helpen bij langere opties. Denk aan het
kiezen van verloftype: vakantie, zorgverlof, ouderschapsverlof. In plaats
van vrij typen (met kans op typefouten), kies je uit een lijst.

A2 Adaptive Cards maken content overzichtelijk en aanklikbaar. Daar
gaan we later dieper op in, maar het punt is: je kunt informatie
structureren op een manier die scanbaar en toegankelijk is.

Hoe ontwerp je spraakinteractie?

Als je spraak toevoegt, denk dan aan een paar dingen. Spraakherkenning is
NooIt 100% betrouwbaar. Mensen hebben verschillende accenten, spreken in
verschillende tempo’'s en soms is er achtergrondgeluid. Ontwerp daarom op
fouttolerantie.

Geef duidelijke feedback. Als de agent een gesproken vraag niet begrijpt,
zeg dat dan vriendelijk. “Sorry, ik verstond je niet helemaal. Kun je het
herhalen?” Of: ‘Bedoelde je: verlof aanvragen?” Laat de gebruiker de
herkenning bevestigen voordat je actie onderneemt.

34

35

Gebruik korte, duidelijke zinnen in je prompts. Geen vakjargon, geen
complexe constructies. Denk aan hoe je tegen een collega zou praten, niet
hoe je een formeel memo schrijft. En test met echte gebruikers die spraak
gebruiken. Dat leert je meer dan welke technische specificatie dan ook.

Best practices voor een inclusieve agent

Laat me nog een keertje concreet maken wat toegankelijkheid in de praktijk
petekent:

2 Combineer modaliteiten: Laat gebruikers kiezen hoe ze
communiceren. Tekst, spraak, knoppen, dropdowns - het hoeft niet Of-
of te zijn, het kan allemaal tegelijk.

2 Denk aan de context: Een gebruiker op de werkvloer heeft andere
pehoeften dan iemand achter een bureau. Mobiel is spraak logischer,
op desktop is typen vaak sneller.

2 Test met diverse groepen: Niet alleen met je collega’s die elke dag met
software werken, maar ook met mensen die minder digitaal vaardig
zijn, of die beperkingen hebben.

2 Zorg voor heldere taal: Vermijd jargon. "Aanvraag indienen” in
plaats van “Verlofmutatie initiéren”. Dit helpt niet alleen mensen met
taalochterstand, maar iedereen.

2 Bied altijd een vitweg: Soms lukt het gewoon niet. Zorg dat er een
optie is om door te schakelen naar een mens, of om het proces later
opnieuw te proberen.

Tot slot: het is geen checklist

Toegankelijkheid is geen checklist. Het is een houding. Door na te denken
over spraak, knoppen en alternatieve input geef je meer mensen toegang
tot jouw oplossing. En vaak zijn het niet alleen mensen met een beperking
die daarvan profiteren. Een goed ontworpen voice-agent is niet alleen
sneller in gebruik, maar ook meer benaderbaar voor iedereen.

De vraag is dus niet of je multimodaliteit moet overwegen. De vraag is:
waarom zou je het niet doen?

Adaptive
cCards
VOOr rijke
INnteracties

In het vorige hoofdstuk hadden we het over multimodailiteit: spraak,
knoppen, dropdowns. Allemaal manieren om gebruikers meer keuze te
geven in hoe ze met je agent communiceren. Maar er is nog een aspect dat
vaak over het hoofd wordt gezien: visuele structuur. Want je hebt het vast
meegemaakt: je stelt een vraag aan een chatbot en krijgt een eindeloze lap
tekst terug. Niet overzichtelijk, niet scanbaar en zeker niet vitnodigend.

Dat is precies waar Adaptive Cards het verschil maken. In plaats van
eenrichtingsverkeer in tekstvorm, geef je je Al-agent visuele kracht: kaarten
met knoppen, keuzelijsten, tekstvelden en duidelijke layout. Het resultaat?
Meer grip, minder verwarring en een betere gebruikerservaring.

Wat zijn Adaptive Cards?

Adaptive Cards zijn flexibele, platformonafhankelijke Ul-componenten. Dat
klinkt abstract, dus laoat me het simpeler maken: het zijn visuele ‘kaarten’ die
je agent kan tonen in plaats van platte tekst. Ze werken in Teams, Outlook,
SharePoint en Power Apps. Ze zijn interactief, contextueel en lichtgewicht. En
ze werken op mobiel, desktop en web zonder dat je voor elk platform iets
anders hoeft te bouwen.

Denk aan een Adaptive Card als een formulier dat je agent voor je invult. In
plaats van dat de gebruiker moet typen “Ik wil vakantieverlof van 15 tot 19 juli”,
toont de agent een kaart met een dropdown voor verloftype, datumvelden
vOOor begin en eind en een knop “Verstuur aanvraag”. De gebruiker Klikt,
selecteert, bevestigt en klaar.

h Geef je lunch dagen door voor week 44.

Deze kaart werkt mogelijk niet goed op mobiele telefoons!

Geef hieronder de dagen door die je mee wilt lunchen. Doe dit zo spoedig mogelijk.
Wijzigingen kun je doorgeven tot woensdagmiddag 16:00 uur.

Mocht je niet meelunchen volgende week kies dan voor annuleren.
[J] Maandag
[i1] Dinsdag
[Woensdag
[J Donderdag

B | Vrijdag

b Voorbeeld van een adaptive card voor het opgeven van
lunch dagen

Time off request

T

View current balance v

Reason for leave

Vacation v
() Al day (8hrs)

Date *
Select a date...

Estimated days off

Select how many days C

Add comments v

m - Voorbeeld van een adaptive card voor verlof
aanvragen

Waarom je Adaptive Cards moet gebruiken

Er zijn een paar goede redenen waarom Adaptive Cards geen extraatje zijn,
maar een essentieel onderdeel van een goed ontworpen agent:

A

38

Beter scanbaar dan platte tekst: Mensen lezen niet, ze scannen. Een
kaart met headers, bullets en knoppen is in een cogopslag duidelijk.
Een tekstblok van tien regels niet.

Rijkere interactie: Via knoppen, formulieren en dropdowns kan een
gebruiker direct actie ondernemen. Geen heen-en-weer gepraat over
wat bedoel je precies, gewoon kiezen en doorgaan.

Consistentie en hergebruik: Als je een goede Card hebt ontworpen,
gebruik je die overal. In Teams, in Outlook, in je Power App. Eén
ontwerp, alle kanalen.

Toegankelijkheid door gestructureerde informatie: Dit sluit aan bij
het vorige hoofdstuk: niet iedereen kan goed omgaan met vrije tekst.
Een gestructureerde kaart met duidelijke velden helpt gebruikers die
moeite hebben met open vragen.

Hoe voeg je Adaptive Cards toe in Copilot Studio?

Het toevoegen van een Adaptive Card in Copilot Studio is geen rocket
science. Je gaat naar de 'Send message’ stap in je conversatieflow en
selecteert ‘Adaptive Card’ in plaats van gewone tekst. Daarna heb je twee
opties: je gebruikt een standaardtemplate of je ontwerpt er zelf een via de
Adaptive Card Designer.

Die Designer is een visuele tool waar je elementen naar je kaart sleept:
tekstvelden, knoppen, afbeeldingen, dropdowns. Je ziet meteen hoe het
eruitziet En als je tevreden bent, genereer je de code en plak je die in Copilot
Studio. Geen handmatig JSON typen, gewoon klikken en slepen.

Zodra je Card er staat, kun je data eraan koppelen. Bijvoorbeeld: het
verloftegoed van de gebruiker, de naam van hun manager, de datum van
vandoag. Dat doe je via variabelen die je hebt opgehaald uit Dataverse of
een andere databron. De Card vult zichzelf met actuele informatie, elke keer
weer.

En het mooie? Je kunt Adaptive Cards ook triggeren vanuit Power Automate
flows. Stel: een manager krijgt een verlofaanvroag. In plaats van een

saaie email, krijgt hij een Card in Teams met alle details en twee knoppen:
Goedkeuren of Afwijzen.

Tips voor sterke Cards

Een Adaptive Card maken is makkelijk. Een goeie maken vraagt wat meer
aandacht Hier zijn een paar dingen die het verschil maken:

2 Ontwerp visueel, denk interactief: Fen Card is geen statische
afbeelding. Het is een interface. Zorg dat knoppen duidelijk zijn, labels
kloppen en de flow logisch is. Test hoe het voelt om ermee te werken.

2 Herbruik cards via Power Automate of component libraries: Als je een
goede Card hebt, sla hem op. Gebruik hem in andere flows, in andere
agents. Geen dubbel werk, wel consistentie.

2 Test op mobiel en desktop: Cards passen zich aan, maar niet altijd
perfect Kijk hoe je Card eruitziet op een klein scherm. Zijn knoppen
groot genoeg? Is tekst leesbaar? Zo niet, pas aan.

A2 Houd het simpel: Een Card met tien velden en vijftien knoppen is
overweldigend. Focus op wat de gebruiker nu nodig heeft. De rest kan
later

Integreer je
Al-agent met
de rest van
het Power
Platform. En
de rest van
de wereld

4

Een agent die alleen met zichzelf kan praten, is nutteloos. De echte

kracht van een Al-agent zit hem in de verbindingen die hij maakt. Met je
bedrijfsdata, met andere systemen, met workflows die al draaien. Want
jouw organisatie draait niet op één tool. Je hebt Dataverse, SharePoint,
misschien ServiceNow, SAP, Salesforce. En die systemen moeten met elkaar
kunnen praten, wil je agent écht waardevol zijn.

Maar voordat we in de techniek duiken, eerst het belangrijkste punt:

Niet alles is of hoeft een agent te zijn.

Sommige zaken handel je handiger af met ‘'ouderwetse’ workflows of Al-
search. De kunst is om te weten waar je agent past in het proces en hoe de
andere delen geautomatiseerd zijn.

Het begint met data

Maar, zoals gezegd: integratie begint altijd bij data. Welke informatie heeft je
agent nodig om zijn werk te doen? VVoor een verlofagent: wie is de gebruiker,

hoeveel verloftegoed heeft hij, wie is zijn manager, welke aanvragen heeft hij
al lopen? Voor een IT-agent: welke systemen heeft de gebruiker, welke tickets
staan er open, wat zijn de standaard-oplossingen?

Die data zitten ergens. In Dataverse, in SharePoint, in een extern systeem. En
je agent moet erbij kunnen.

Power Automate: de lijm tussen systemen

Power Automate is het gereedschap waarmee je acties verbindt. Je agent
stelt een vraag, Power Automate haalt data op, verwerkt die en stuurt het
resultoat terug. Of andersom: je agent krijgt input van een gebruiker, Power
Automate triggert een approval-workflow, stuurt een notificatie naar Teams
en update Dataverse.

Denk aan het verlof-voorbeeld. De gebruiker vraagt verlof aan via de agent.
De agent roept een Power Automate flow aan die checkt of er genoeg
tegoed is, de aanvroag opslaat in Dataverse, een goedkeuringsverzoek
stuurt naar de manager via Teams en de gebruiker een bevestiging geeft.
Allemaal geautomatiseerd, allemaal via Power Automate.

42

Het mooie van Power Automate is dat het honderden
standaardconnectoren heeft. SharePoint, Outlook, Teams, Dynamics, Azure
services - het zit er allemaal al in. Geen custom code nodig, kwestie van
klikken en configureren.

Custom connectors: als standaard niet genoeg is

Soms zitten je data of functionaliteit in een systeem dat Power Platform niet
standaard kent. Een legacy ERP, een externe API, een specifiek ticketsysteem
zoals ServiceNow. Dan bouw je een custom connector.

Een custom connector is eigenlijk een vertaalloag. Het vertaalt wat je agent
vraagt naar wat het externe systeem begrijpt en andersom. Je definieert
welke acties mogelijk zijn (data ophalen, aanmaken, updaten), welke
authenticatie nodig is en hoe de responses eruitzien. Eenmaal gebouwd,
gebruik je die connector alsof het een standaardconnector is.

En met de laatste ontwikkelingen kun je ook een Model Context Protocol
(MCP) server koppelen. Hiermee geef je de Agent een ‘verzameling' tools

in plaats van losse connectoren, de agent kan op basis van eigen kennis
kiezen welke tool het beste past bij de taak die uitgevoerd moet worden, en
zelfs verschillende tools combineren.

Voorbeeld: je IT-agent moet een ticket aanmaken in ServiceNow. Je bouwt
en koppelt custom connector die met de ServiceNow APl praat. In je agent
roep je de juiste tool vanuit de MCP server aan met de ticket details,
ServiceNow maakt het ticket aan en de tool geeft het tickethnummer terug
aan de agent. Voor de gebruiker voelt het naadloos.

Dataverse en RAG: kennis ophalen op het juiste moment

Dataverse is de database van Power Platform. Daar sla je gestructureerde
data op: gebruikers, aanvragen, transacties, configuratie. Je agent kan
rechtstreeks met Dataverse praten om data op te halen of bij te werken.

Maar niet alle kennis is gestructureerd. Soms zit informatie in documenten,
in SharePoint-pagina’s, in PDF's. Daar komt RAG om de hoek kijken. RAG
staat voor Retrieval-Augmented Generation, maar laten we het simpel
houden: het is een manier om je agent snelle toegang te geven tot
ongestructureerde kennis.

Je geeft je agent toegang tot een set documenten. Als een gebruiker een
vraag stelt, zoekt de agent in die documenten naar relevante informatie,

43

haalt die op en gebruikt die om een antwoord te genereren. Niet door alles
te kopiéren, maar door context te begrijpen en samen te vatten.

Voorbeeld: je finance-agent krijgt de vraoag “Wat waren de Q3-resultaten?”.
De agent zoekt in SharePoint naar het Q3-rapport, vindt de relevante sectie
en geeft een samenvatting: “Omzet steeg met 12%, operationele marge
verbeterde naar 18%.” De gebruiker hoeft niet zelf te zoeken, de agent doet
het werk.

Als er geen APl is..

Soms is er geen API of connector. Soms moet je agent werken met een
systeem dat alleen een scherm heeft en geen integratiemogelijkheden. Dan
gebruik je een agent die een eigen virtuele ‘computer’ heeft en dus een
‘'scherm’ kan zien. Deze techniek, de we ‘computer use’ noemen en die in feite
de slimme opvolger is van RPA (Robotic Process Automation), laoat jouw bot
letterlijk lezen, klikken en typen zoals een mens dat zou doen.

Power Platform heeft hier de techniek voor, maar in de praktijk blijkt het voor
een agent niet altijd makkelijk om de weg te vinden door de schermen en
formulieren van een legacy-app. We gebruiken deze techniek dus eigenlijk
alleen als er geen andere optie is.

De juiste tool voor de juiste klus

En dan komen we terug bij het punt van het begin: niet alles is een agent. Als
je alleen data hoeft op te zoeken, is Al-search vaak efficiénter. Als je een vast
proces helbt zonder variatie, is een workflow beter. Een agent gebruik je als
er beslissingen genomen moeten worden, als context belangrijk is, of als het
proces dynamisch is.

Kijk naar je use case. Vraag je: heeft dit conversatie nodig, of kan het met
een flow? Moet een mens erbij, of kan het volledig geautomatiseerd? Door
die vragen te stellen, kies je de juiste tool. En vaak is het antwoord: een
combinatie. Een agent die workflows triggert, die Al-search gebruikt voor
kennis en die naadloos integreert met je bestaande systemen.

Dat is waar de kracht zit. Niet in de agent alleen, maar in hoe hij samenwerkt
met de rest van je digitale ecosysteem.

Slim testen
van je
Al-agent

45

De happy flow krijgt altijd aandacht. Je bouwt een verlofagent, test of hij
verlof kan aanvragen en als dat werkt ben je tevreden. Maar wie échte
kwaliteit wil leveren, test vooral op de dingen die fout gaan. Want daar
bewijst je agent zijn waarde - of faalt hij genadeloos.

Wat gebeurt er als een gebruiker “Ik wil vrij” typt, zonder data? Of
‘kaasbroodje in de cloud” omdat hij de agent even wil pesten? Of “8e maart”
in plaats van “08-03-2024"? Juist in die momenten zie je of je agent robuust is
of een hoopje ellende wordt.

Waarom testen op edge cases essentieel is

Testen op de happy flow is makkelijk. Je weet wat je verwacht, je weet wat
er moet gebeuren en je test of dat klopt. Maar de echte wereld is rommelig.
Gebruikers typen onduidelijk, stellen incomplete vragen, of doen dingen die
je nooit had verwacht.

Als je daar niet op test, krijg je agents die frustreren in plaats van helpen
en die je reputatie beschadigen in plaats van versterken. Bovendien: elke
mislukte interactie is een kans om te leren: welke intentie miste er? Welke
vraag had je moeten voorzien? Welke fallback had beter gekund?

Daarom is fallback-testing geen luxe, maar noodzaak. Het beschermt
je reputatie, geeft inzicht in wat je mist en zorgt voor een betere
gebruikerservaring door slimme “weet ik niet-antwoorden.

Veelvoorkomende testscenario’s

Laat me concreet maken welke scenario’s je moet testen. Deze kom je overal
tegen, in elke agent, voor elke usecase.

2 Onbegrijpelijke input: De gebruiker typt “Bla bla hallo?” of
‘Kaasbroodje in de cloud?” Wat doet je agent? Zegt hij “Ik begrijp je
niet” en laat de gebruiker hangen? Of zegt hij "Ik snap het even niet
helemaal. Ik kan je helpen met verlof aanvragen, je verloftegoed
opvragen, of je lopende aanvragen bekijken. Wat wil je doen?”

2 Gedeeltelijke vragen: "Ik wil convragen” zonder te zeggen wat. Of
‘Wanneer is.." zonder onderwerp. De gebruiker weet wat hij bedoelt,
maar de agent niet. Test hoe je agent omgaoat met ontbrekende
context. Vraagt hij door? Biedt hij opties? Of crasht hij?

46

Conversieproblemen: Gebruikers typen data in allerlei formaten.
‘8e maart’, "twee-en-twintig’, "next Friday” Je agent moet doar mee
omgaan. Test of je conversielogica robuust genoeg is, of dat rare
invoer tot rare resultaten leidt.

Edge cases en misbruik: Beledigende input. Vragen die niks met je
agent te maken hebben. Pogingen om je agent dingen te laten doen
die niet mogen. Test hoe je agent grenzen bewaakt. Blijft hij beleefd
maar duidelijk? Of laat hij zich verleiden tot ongewenst gedrag?

Intentie-verwarring: "Wachtwoord wissen” versus ‘wachtwoord
resetten” Voor een gebruiker klinkt dat hetzelfde, maar technisch kan
het iets anders betekenen. Test of je agent die nuance oppakt, of
vraagt om verduidelijking.

Hoe ontwerp je slimme fallbacks?

Een fallback is niet "Sorry, dat begrijp ik niet” en klaar. Dat is lui. Een goede
fallback geeft erkenning, richting en alternatieven:

2

Erkenning: Laat weten dat je het hoort, ook al snap je het niet
helemaal. "Ik snap het even niet helemaal..” voelt vriendelijker dan
‘Onbegrijpelijke invoer™.

Alternatieven: Bied knoppen met mogelijke opties. ‘Bedoelde je: verlof
aanvragen, verloftegoed opvragen, of iets anders?” De gebruiker hoeft
niet opnieuw te typen, gewoon klikken.

Doorverwijzen: Als je agent echt niet kan helpen, verwijs dan slim door.
Met een link naar de kennisbank, of een optie om door te schakelen
naar een mens.

Leren: Log onbekende vragen. Analyseer wat gebruikers vragen waar
je niet op voorbereid was. Voeg die intenties toe aan je agent, of pas
je prompts aan. Elke gemiste vraag is een kans om beter te worden.

4y

Tools die helpen bij testen

Je hoeft het wiel niet opnieuw uit te vinden. Er zijn tools die je helpen bij
testen:

2 Testcanvas in Copilot Studio: Hier speel je gesprekken na, simuleer je
variaties en bekijk je welke triggers matchen. Je ziet direct of je agent
doet wat je verwacht.

2 Conversation transcript logging via monitoring: Analyseer niet-
gematchte vragen. Kijk welke input je agent niet begreep en pas je
ontwerp aan.

2 LUIS of Azure Language Studio: Gebruik NLU-training om te testen hoe
intenties afwijken. Zie welke varianten van een vraag je agent wel en
niet oppikt.

2 Prompt flow testing met variabelen: Simuleer ontbrekende data. Test
wat er gebeurt als een variabele leeg is, of een onverwachte waarde
heeft.

Deployment en governance

We hadden het in hoofdstuk 2 al over Application Lifecycle Management en
governance. Hier de korte herhaling: gebruik ALM voor deployment. Commit
changes naar source control, gebruik DevOps of GitHub-pipelines, plan
updates en rollback-scenario’s.

Inmiddels zijn er ook technieken waarmee je agents geautomatiseerd

kunt testen, net zoals je dat met code doet. Deze ‘evaluations’ zijn
gebruikersprompts met daarbij de kwaliteitscriteria waar de antwoorden
aan moeten voldoen. Zo kun je na iedere aanpassing zien of je agent nog
de juiste antwoorden geeft en zich houdt aan de regels die je hebt gesteld.

En vergeet governance niet. DLP policies bepalen wat je agent mag. Logging
en auditing houden bij wat hij doet. En beheersing van reputatierisico’s
voorkomt dat je agent verkeerde output geeft die gebruikers frustreert of
schade aanricht.

Dit hoort bij testen. Want je test niet alleen of je agent werkt, maar ook of hij
veilig werkt, binnen de regels, met controle en met de mogelijkheid om snel
terug te rollen als het toch misgaat

Van theorie
naar praktijk:
werkende
Al-agents In
actie

49

We hebben het gehad over architectuur, prompts, testing en
toegankelijkheid. Nu wordt het concreet. Hoe ziet een werkende Al-agent
er in de praktijk uit? Niet als theoretisch model, maar als daadwerkelijke
oplossing die morgen al zou kunnen draaien in jouw organisatie.

Hieronder vind je een paar praktische scenario’s die laten zien hoe Al-
agents in Power Platform echte problemen oplossen. Van een eenvoudige
HR-verlofaanvraoag tot een multi-agent samenwerking tussen afdelingen.
Het doel? Je een blauwdruk geven die je kunt aanpassen aan jouw eigen
situatie.

Scenario 1: HR-agent voor verlofaanvragen via Teams

Medewerkers willen snel verlof aanvragen zonder in
portalen te hoeven zoeken. De agent biedt conversation
starters zoals ‘Ik wil verlof aanvragen” Vervolgens toont
hij een Adaptive Card met dropdown voor verloftype,
datumvelden voor begin en eind en een bevestigingsknop.

De agent checkt het verloftegoed in Dataverse, triggert
een Power Automate approval workflow naar de manager
en stuurt een Teams-notificatie bij goedkeuring of
afwijzing. Edge cases: wat als tegoed onvoldoende is? De
agent waarschuwt vooraf en biedt alternatieven. Wat bij
overlappende aanvragen? De agent checkt bestaande
aanvragen en meldt conflicten.

R Copilot Studio » Dataverse > Agent Flows > Teams

Scenario 2: Finance-agent voor rapportage en samenvatting

Finance teams willen snel rapporten ophalen en laten
samenvatten. Een gebruiker vraagt ‘Geef me het Q3

Scenario 3: Multi-agent orchestratie — samenwerking tussen

50

R

HRenIT

rapport”. De agent zoekt in SharePoint naar het document,
gebruikt Azure Al Search om de inhoud te verwerken en
genereert via prompt engineering een samenvatting met
key takeaways. Die samenvatting toont hij in een Adaptive
Card met bullets voor de belangrijkste punten. Via RAG
haalt de agent context uit eerdere rapporten om trends
te herkennen. Security is cruciaal: de agent checkt via
Microsoft Entra ID of de gebruiker toegang heeft tot het
gevraagde rapport.

Copilot Studio » SharePoint » Azure Al » gebruiker

Nieuwe medewerker onboarding vraagt om samenwerking
tussen HR en IT. Een manager meldt “Nieuwe collega start
volgende week”. De HR-agent regelt contract, verloftegoed
en introductie in Dataverse. Tegelijkertijd triggert hij de
[T-agent via een handoff in Copilot Studio. Die IT-agent
pestelt een laptop, creéert accounts in Azure AD en regelt
toegang tot systemen.

Beide agents delen data via Dataverse zodat ze elkaar
niet in de weg zitten. Power Automate orchestreert de
volgorde: eerst HR-taken, dan [T-taken. De gebruiker ziet
een naadloze overdracht tussen agents zonder dat hij
merkt dat er twee systemen werken.

Multi-agent flow met gedeelde context via Dataverse

Sl

Bonus scenario's voor inspiratie

A

Facilities-agent: Medewerker wil vergaderruimte boeken voor morgen
14:00 met 8 personen. Agent checkt beschiklbaarheid in Outlook, boekt
de ruimte, vraagt of catering nodig is en regelt parkeerplaatsen voor
externe bezoekers.

Sales-agent: Lead komt binnen via webformulier. Agent kwalificeert
de lead op basis van bedrijfsgrootte en budget, update CRM

met leadstatus en stuurt een follow-up herinnering naar de
accountmanager na drie dagen.

Support-agent: Gebruiker meldt "Mijn applicatie crasht' Agent zoekt in
de kennisbank naar bekende problemen, vindt een oplossing en deelt
die. Werkt het niet? Agent maaokt automatisch een ticket aan in het
supportsysteem met alle details.

Legal-agent: Medewerker zoekt een NDA-template voor een nieuwe
klant. Agent zoekt in SharePoint naar goedgekeurde contracten,
checkt of er specifieke compliance-eisen zijn voor dit land en
genereert een template met de juiste variabelen ingevuld.

Marketing-agent: Campagnemanager vraogt "Wat is de status van
onze Q4-campagne?”. Agent haalt data uit marketing automation tool,
toont open rate, click rate en conversies en suggereert op basis van
Al-analyse welke content het best presteert.

52

Hoe meet je of de agent succesvol is?

Om het succes van een agent te meten kun je de volgende metrics
hanteren:

N N NN NN

Aantal afgehandelde aanvragen per dag/week/maand
Gebruikerstevredenheid scores (CSAT, NPS)

Tijdwinst vs. handmatig proces

Percentage succesvol afgeronde gesprekken (completion rate)
Aantal escalaties naar mens

Adoptiegraad: hoeveel gebruikers maken er daadwerkelijk gebruik
van?

Jij bepaalt welke metric(s) passen bij jouw specifieke situatie. Bij een
verlofaanvraag-agent is bijvoorbeeld het aantal verwerkte aanvragen wel
relevant, en een CSAT-score niet. Kies pragmatisch: welke cijfers geven echt
inzicht in de toegevoegde waarde?

Lessons learned uit de praktijk

N N N NN

Start simpel, schaal daarna

Gebruikers willen geen Al zien, maar resultaat
Fallbacks zijn net zo belangrijk als happy flows
Governance vanaf dag 1, niet achteraf

Meet succes met concrete metrics

IB!;IJS!5!CI

"Start simpel,
schadal
daarna’

eeeeeeeeeeeeeeeeeeeeeeeeeee

® Conclusie

Begin
vandaag,
leer
onderweg

We zijn begonnen met de vraag: hoe bouw je Al-agents die echt werken?
Niet als theoretisch model, maar als oplossing die morgen al draait in je
organisatie. De antwoorden staan in de voorgaande hoofdstukken. Maar
loat me het samenvatten.

1. Begin met waarom: \Welk probleem los je op? Voor wie? En waarom is
een Al-agent de juiste oplossing? Zonder duidelijk antwoord op die
vragen, bouw je iets dat niemand gebruikt.

2. Zorg dat je architectuur op orde is: Solutions environments, DLP
policies, security - dat zijn geen details, dat is de basis. Zonder stevige
fundering stort je agent in zodra je probeert te schalen.

3. Ontwerp je conversatie met zorg: Goede prompts, slimme
conversation starters en vooral: goede fallbacks. Want je agent
bewijst zijn waarde niet in de happy flow, maar als het even niet lukt.

4, Integreer met de rest van je ecosysteem: Data is koning. Zonder data
is je agent een lege huls. Maak verbinding met Dataverse, SharePoint,
externe systemen. Gebruik Power Automate als lijm.

5. Test grondig: Niet alleen de happy flow, maar vooral de edge cases.
Wat gebeurt er als iets fout gaat? Hoe reageert je agent? Dat bepaalt
of gebruikers hem vertrouwen.

6. En begin klein: Een scenario, eéen agent, goed gebouwd. Schaal
daarna. Binnen governance, met metrics, met leren van wat werkt en
wat niet.

De toekomst van werk is niet mens of Al. Het is mens én Al, samen. Agents
die taken overnemen zodat mensen kunnen focussen op wat echt
belangrijk is. Dat bouw je niet in één keer. Dat bouw je stap voor stap, met
elke agent die je lanceert.

Dus: kies een scenario. Bouw het. Test het. Leer ervan. De rest komt vanzelf.

Al-agents bouwen op
Power Platform

Praktijkgids voor makers die low-
code Al-agents willen bouwen
die echt gebruikt worden.

Met heldere principes, een
praktisch stappenplan en
herkentbare voorbeelden staat |
agent morgen in productie.

Over Albert-Jan Schot

Alpert-dan is senior
cloudarchitect en
CTO bij Blis Digital,
verantwoordelijk voor
de technische visie en
strategie van het low-
code domein.

Hij is Microsoft MVP voor
M365 Development en
M365 Apps & Services

en deelt actief zijn
praktijkervaring

en kennis met de
community en Microsoft.

%':,s!ﬁ!a

Unleash the power of technology
www.blisdigital.com

